Tight cohesion between glycolipid membranes results from balanced water–headgroup interactions

نویسندگان

  • Matej Kanduč
  • Alexander Schlaich
  • Alex H. de Vries
  • Juliette Jouhet
  • Eric Maréchal
  • Bruno Demé
  • Roland R. Netz
  • Emanuel Schneck
چکیده

Membrane systems that naturally occur as densely packed membrane stacks contain high amounts of glycolipids whose saccharide headgroups display multiple small electric dipoles in the form of hydroxyl groups. Experimentally, the hydration repulsion between glycolipid membranes is of much shorter range than that between zwitterionic phospholipids whose headgroups are dominated by a single large dipole. Using solvent-explicit molecular dynamics simulations, here we reproduce the experimentally observed, different pressure-versus-distance curves of phospholipid and glycolipid membrane stacks and show that the water uptake into the latter is solely driven by the hydrogen bond balance involved in non-ideal water/sugar mixing. Water structuring effects and lipid configurational perturbations, responsible for the longer-range repulsion between phospholipid membranes, are inoperative for the glycolipids. Our results explain the tight cohesion between glycolipid membranes at their swelling limit, which we here determine by neutron diffraction, and their unique interaction characteristics, which are essential for the biogenesis of photosynthetic membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics study of anhydrous lamellar structures of synthetic glycolipids: effects of chain branching and disaccharide headgroup.

Glycolipids form materials of considerable potential for a wide range of surfactant and thin film applications. Understanding the effect of glycolipid covalent structure on the properties of their thermotropic and lyotropic assemblies is a key step toward rational design of new glycolipid-based materials. Here, we perform molecular dynamics simulations of anhydrous bilayers of dodecyl β-maltosi...

متن کامل

Transfer of glycolipid between membranes of tissue culture cells, using dansylcerebroside as a model.

Donor cells, which had incorporated dansylcerebroside in their membranes, could further transfer this glycolipid to monolayers of acceptor cells. The case of transfer varied among acceptor cells, BHK cells being the best and MDBK cells the poorest acceptors of the cells tested. The process of transfer seemed to be mediated by lipids rather than by proteins of the membranes. The mode of attachme...

متن کامل

Molecular dynamics simulation of monoalkyl glycoside micelles in aqueous solution: influence of carbohydrate headgroup stereochemistry.

Comparative molecular dynamics simulations of n-octyl-beta-D-galactopyranoside (beta-C8Gal) and n-octyl-beta-D-glucopyranoside (beta-C8Glc) micelles in aqueous solution have been performed to explore the influence of carbohydrate stereochemistry on glycolipid properties at the atomic level. In particular, we explore the hypothesis that differences in T(m) and T(c) for beta-C8Gal and beta-C8Glc ...

متن کامل

Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation

Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and...

متن کامل

GLTP-fold interaction with planar phosphatidylcholine surfaces is synergistically stimulated by phosphatidic acid and phosphatidylethanolamine.

Among amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017